Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity

M. K. Bhunia, S. Melissen , M. R. Parida, P. Sarawade , J. M. Basset , D. H . Anjum , O.F. Mohammed , P. Sautet , T. L. Bahers , K. Takanabe
Volume 27, Issue 24, 8237-8247, (2015)

Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity


Carbon Nitride Photocatalyst


​Developing stable, ubiquitous, and efficient water-splitting photocatalyst material that has extensive absorption in the visible-light range is desired for a sustainable solar energy-conversion device. We herein report a triazine-based carbon nitride (CN) material with different C/N ratios achieved by varying the monomer composition ratio between melamine (Mel) and 2,4,6-triaminopyrimidine (TAP). The CN material with a different C/N ratio was obtained through a two-step synthesis protocol: starting with the solution state dispersion of the monomers via hydrogen-bonding supramolecular aggregate, followed by a salt-melt high temperature polycondensation. This protocol ensures the production of a highly crystalline polytriazine imide (PTI) structure consisting of a copolymerized Mel-TAP network. The observed bandgap narrowing with an increasing TAP/Mel ratio is well simulated by density functional theory (DFT) calculations, revealing a negative shift in the valence band upon substitution of N with CH in the aromatic rings. Increasing the TAP amount could not maintain the crystalline PTI structure, consistent with DFT calculation showing the repulsion associated with additional C–H introduced in the aromatic rings. Because of the high exciton binding energy calculated by DFT for the obtained CN, the cocatalyst must be close to any portion of the material to assist the separation of excited charge carriers for an improved photocatalytic performance. The photocatalytic activity was improved by providing a dendritic tip-on-like shape grown on porous fibrous silica KCC-1 spheres, and highly dispersed Pt nanoparticles (<5 nm) were photodeposited to introduce heterojunction. As a result, the Pt/CN/KCC-1 photocatalyst exhibited an apparent quantum efficiency (AQE) as high as 22.1 ± 3% at 400 nm, and the silica was also beneficial for improving photocatalytic stability. The results obtained by time-resolved transient absorption spectroscopy measurements were consistent with the improved photocatalytic activity with the slowest carrier recombination for the optimized CN photocatalyst.


DOI: 10.1021/acs.chemmater.5b02974


Website PDF

See all publications 2015